Rutile alloys in the Mn-Sb-O system stabilize Mn+3 to enable oxygen evolution in strong acid

2018: ACS Catalysis

https://doi.org/10.1021/acscatal.8b02689

Lan Zhou, Aniketa Shinde, Joseph H. Montoya, Arunima Singh, Sheraz Gul, Junko Yano, Yifan Ye, Ethan J. Crumlin, Matthias H. Richter, Jason K. Cooper, Helge S. Stein, Joel A. Haber, Kristin A. Persson,* John M. Gregoire*

Electrocatalysis of the oxygen evolution reaction is central to several energy technologies including electrolyzers, solar fuel generators, and air-breathing batteries. Strong acid electrolytes are desirable for many implementations of these technologies, although the deployment of such device designs is often hampered by the lack of non-precious-metal oxygen evolution electrocatalysts, with Ir-based oxides comprising the only known catalysts that exhibit stable activity at low overpotential. During our exploration of the Mn–Sb–O system for precious-metal-free electrocatalysts, we discovered that Mn can be incorporated into the rutile oxide structure at much higher concentrations than previously known, and that these Mn-rich rutile alloys exhibit great catalytic activity with current densities exceeding 50 mA cm–2 at 0.58 V overpotential and catalysis onset at 0.3 V overpotential. While this activity does not surpass that of IrO2, Pourbaix analysis reveals that the Mn–Sb rutile oxide alloys have the same or better thermodynamic stability under operational conditions. By combining combinatorial composition, structure, and activity mapping with synchrotron X-ray absorption measurements and first-principles materials chemistry calculations, we provide a comprehensive understanding of these oxide alloys and identify the critical role of Sb in stabilizing the trivalent Mn octahedra that have been shown to be effective oxygen evolution reaction (OER) catalysts.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: