Electronic Structure and Performance Bottlenecks of CuFeO2 Photocathodes

2019: Chemistry of Materials


Chang-Ming Jiang, Sebastian E. Reyes-Lillo, Yufeng Liang, Yi-Sheng Liu, Guiji Liu, Francesca M. Toma, David Prendergast, Ian D. Sharp,* Jason K. Cooper*

The path to realizing low-cost, stable, and earth-abundant photoelectrodes can be enabled through a detailed understanding of the optoelectronic properties of these materials by combining theory and experimental techniques. Of the limited set of oxide photocathode materials currently available, CuFeO2 has emerged as a promising candidate warranting detailed attention. In this work, highly compact thin films of rhombohedral (3R) CuFeO2 were prepared via reactive co-sputtering. Despite its 1.43 eV indirect band gap, a cathodic photocurrent of 0.85 mA/cm2 was obtained at 0.4 V versus reversible hydrogen electrode in the presence of a sacrificial electron acceptor. This unexpected performance was related to inefficient bulk charge separation because of the ultrafast (<1 ps) self-trapping of photogenerated free carriers. The electronic structure of 3R-CuFeO2 was elucidated through a combination of optical and X-ray spectroscopic techniques and further complemented by first-principles computational methods including a many-body approach for computing the O K-edge X-ray absorption spectrum. Through resonant inelastic X-ray scattering spectroscopy, the visible absorption edges of CuFeO2 were found to correspond to Cu → Fe metal-to-metal charge transfer, which exhibits a high propensity toward self-trapping. Findings of the present work enable us to understand the performance bottlenecks of CuFeO2 photocathodes and suggest feasible strategies for improving material limitations.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

%d bloggers like this: